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ROMAN NOTATION

c speed of sound in liquid

D barrier thickness

D* nondimensional barrier thickness

EI  energy flux density of incident shock wave

ET energy flux density of transmitted wave

f incident shock wave pressure function

PI pressure of incident shock wave

PT pressure of transmitted wave

Pv pressure in cavity

P0  total pressure for reflection at x = 0

P1  total pressure for reflection at x = x,

t time after arrival of incident shock wave

t'n arrival time of n-th pulse in limit of zero barrier

thickness

tit n arrival time of n-th pulse

Vn  velocity of n-th cavitated slab

V(x) velocity of liquid cavitated at x

x location relative to incident (left) side of barrier

Xn location of n-th cavitation

z any real number a 0

GREEK NOTATION

S small real number a 0, i.e., S - 0.0261

E any real number > 0

9 time-decay constant of incident shock wave

p mass density of liquid

T cut-off time of hyperbolically decaying shock wave
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ABSTRACT

The transmission of a one-dimensional
shock wave across an evacuated barrier in a
liquid is modeled. In this model the inter-
action of the shock wave with the incident
side of the barrier causes the liquid to
cavitate. The cavitated liquid then moves
across the barrier and collides with the
liquid on the opposite side of the
barrier,thus producing a transmitted wave
into the liquid.

The pressure history of the transmitted
wave is determined from that of the incident
shock wave. Although the impulse of the
transmitted wave is the same as that of the
incident shock wave, the transmitted wave can
have considerably lower peak pressure and
energy flux density. Possible extensions of
this model are discussed. Also, potential
military and industrial applications are
considered.

ADMINISTRATIVE INFORMATION

This work was funded by the David Taylor Research Center

Independent Exploratory Development (IED) program under Work Unit

1750-236 for FY-1990.

INTRODUCTION

Surface ships and submarines rust be protected from under-

water explosions so that they can survive to accomplish their

missions. Furthermore, it is important that the effects of

underwater explosions in industrial applications (such as under-

water construction and demolition) be contained in the desired

region so that machinery and personnel are protected. One method

of protection is to place a barrier between an explosion and an

object to reduce the damaging effects of the shock wave. This

barrier might consist of a foam or bubble screen or some more

1



complicated arrangement. However, to find the proper types of

barriers it is first necessary to understand the fundamental

mechanisms that reduce the damage. To achieve this it is worth-

while to examine and analyze simple models of protective barriers

to identify and to model mathematically the physics of the phe-

nomena. It is the objective of this program to develop such a

model. In this model a simple one-dimensional shock wave is

incident on a barrier containing no material, i.e., a vacuum.

The development of the model considers the cavitation of the

liquid at its interface with the barrier. This development shows

that the decay in the pressure of the incident wave causes a

reduction in the pressure and energy flux per unit area of the

transmitted wave. Of course, there is no loss of energy to the

vacuum itself. Previous work on the transmission of shock waves

across barriers (composed of foam, air bubbles, etc.) appears to

have concentrated on the transmission across the material inside

the barrier rather than considering the effect of the liquid

cavitating at the interface of the liquid with the barrier, see,

e.g., Refs. 1-10. However, some work considering cavilaLion has

been performed, see, e.g., Lyakhov.1 1  It is plausible that

existing experimental data that were obtained for bubble screens

can be used to test this theory.

EVACUATED-BARRIER CAVITATION MODEL

In the evacuated-barrier cavitation model, a one-dimensional planar

shock wave propagating in a liquid is incident on a barrier that

is immersed in the liquid; see Fig. 1. The pressure in the shock

wave is sufficiently high so that the pressure in the barrier is

2



NOTE THAT THESE ARE SIMPLY BOUNDARY LINES. THEY

CONTAIN NO MATERIAL AND ARE OF ZERO THICKNESS.

INCIDENT SHOCK FRONT

DIRECTION OF PROPAGATION

EVACUATED
LIQU ID BAR RIER LIQUID

Fig. 1. Evacuated-barrier model.
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negligible in comparison to that of the shock wave. Thus, the

pressure within the barrier can be considered as that of a vacu-

um, i.e., zero. If the incident pressure is sufficiently high,

the reflected shock wave will cause a quasi-continuous cavitation

of the liquid. This will result in a region of cavitation bub-

bles between the front of the reflected shock wave and the barri-

er as shown in Fig. 2. The cavitated liquid parcels* will then

move to the opposite side of the barrier and collide with it.

The shock wave resulting from these collisions will subsequently

propagate into the liquid on the other side of the barrier, as

shown in Fig. 3. However, the times of arrival of the liquid

parcels are spread out because of their movement across the

barrier. This spread causes the shock wave that they produce to

have a considerably lower pressure than that of the incident

shock wave. A similar reduction occurs in the energy flux densi-

ty of the shock wave.

REVIEW OF THEORY FOR INITIAL VELOCITY OF CAVITATED LIQUID

It is instructive to review the theory for determining the

velocity distribution in the liquid immediately after cavitation.

This review is similar to work that has been reported by, e.g.,

Kennard, 1 2 Cushing,1 3 and Waldo. 14  Consider a one-dimensional

situation where a planar shock wave is acoustically propagating

the x- direction but in the domain where x is negative and is

incident on a free surface at x = 0 as shown in Fig. 4. Also let

For one-dimensionai flow. these parcels are *slabs." as portrayed in Fig. 3 and for three-dimensional flow

they might be droplets.

4



CAVITATION BUBBLES
0 0 0 0 O 0
0 0 0 0 0 0

0 0 0 00 0
0 0 0 0 0 0
0 0 0 0 0 0

REFLECTED 0 0 0 0 0 0
SHOCK FRONT 0 0 0 0 0 0

0 0 CAVITATED 0
DIRECTION OF 0 0 LIQUID 0
PROPAGATION 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 EVACUATED
0 0 0 0 0 0 BARRIER
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

Fig. 2. Cavitation.

ORIGINAL BARRIER POSITIONS

DIRECTION OF
MOVEMENT-

FRONT OF
TRANSMITTED

WAVE

COLLIDED
SLABS OF

LIQUID

MOVING SLABS (PARCELS)

OF LIQUID

Fig. 3. Collision of cavitated slabs and transmitted wave.
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INCIDENT SHOCK FREE SURFACE
FRONT (BARRIER)

0

Fig. 4. Planar shock wave incident on surface.
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the pressure of this incident shock wave at the location x and

time t be given by

Pi(x,t) = f(ct - x), for ct a x

= 0, for ct < x, (1)

where c is the speed of sound in the liquid (see, e.g., Cole, 15

p. 143 or Landau and Lifshitz, p. 247). From this equation it

is seen that this shock wave arrives at the free surface at

t = 0. Now let the pressures in the incident wave be sufficient-

ly large so that the pressure at the free surface and the hydro-

static pressure are negligible in comparison. Immediately after

arrival, a reflected wave will propagate from the free surface in

opposite direction with the pressure

- f(ct + x), for ct 2 -x

and

0, for ct < -x;

see Fig. 5. Thus, if the pressures of the incident wave are

positive, then the reflected wave is a tension wave. In this

situation, the total pressure in the liquid will be the pressure

of the incident wave plus the pressure of the reflected wave,

i.e.,

P0 (x,t) = f(ct - x) - f(ct + x), for ct a - x, (2)

where the "0" in the subscript denotes that the reflection is at

the free surface at x = 0. Note that Eq. 2 obeys the boundary

condition, P0 (0,t) = 0, at the free surface (at x = 0). It is

7



FREE SURFACE

(BARRIER)

REFLECTED SHOCK
FRONT

0 x

Fig. 5. Reflected shock wave.
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now assumed that f(z) is a decreasing function of z. That

is, for any real number z 0,

f(z + E) < f(z), for any real number E > 0,

see Fig. 6. For this decreasing function it is seen that for x<O

P0 (x,t) < 0, for ct - x.

Now let the pressures in the incident wave be sufficiently large

so that the magnitude of the (negative) pressure* necessary to

cause the liquid to cavitate is also negligible in comparison.

Under this condition the liquid will cavitate and form a pair of

new free surfaces at x = x, that are very close to the original

free surface (at x = x0 = 0); see Eq. 2 for the total pressure in

the liquid. The very small space between this pair of new free

surfaces is the first cavity; see Fig. 7. Defining p to be the

mass density of the liquid and using one-dimensional linear

acoustic theory (see, e.g., Cole,1 5 p. 143 or Landau and Lif-

shitz, 1 6 p. 247), it is seen that the velocity of the liquid at

the new free surface that is closest to the barrier on this

cavity, occurring at t = -xl/c, is

V1 = [f(ct - xl) + f(ct + xl)]I(pc)

= [f(-2x,) + f(0)]/(pc)

- 2f(-2xl)/(pc), (3)

because x, is approximately zero and becomes exactly zero in the

The problem for lower pressures is much more complicated, see, e.g., Prosperetti [17].

9



P l(xt) = f(ct - x) PRESSURE

0

Fig. 6. Decreasing incident shock wave.

FIRST
CAVITY

FREE SURFACE
(BARRIER)

PAIR OF NEW FREE

SURFACES CAUSED
BY CAVITATION

VELOCITY AT NEW
FREE SURFACE

V,

X1 0 x

Fig. 7. Pair of new free surfaces caused by cavitation.
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limit of zero cavitation pressure at the free surface. Because

the space between the slabs is negligibly small immediately after

cavitation, the location of both surfaces is at x = xI . It is

noted that, for this first new cavitated slab, the approximation

V1 - 2f(O)/(pc) (4)

could also be used and would be exact in the limit of zero cavi-

tation pressure.

In similar fashion, the remainder of the incident wave will

reflect off of this first cavity with the pressure

- f(ct + x - 2x,) + Pv, for ct Z - x and x - xj ,

where Pv is the pressure in the cavity (that might be of similar

magnitude to the vapor pressure of the liquid). The total

pressure in the liquid will be the pressure of the incident wave

plus the pressure of the reflected wave, i.e.,

Pl (x,t) = f(ct - x) + .[-f(ct + x - 2x,) + Pv],

for ct Z - x and x : Xl,

where the subscript "I" denotes that the reflection is at x = xI .

It is noted that this equation obeys the boundary condition,

Pl(x 1 ,t) = Pv at x = xI . Now let the pressures in the incident

wave be sufficiently large so that Pv is also negligible in

comparison. Under this condition the liquid will cavitate and

form a second pair of new free surfaces, see Fig. 8, at x = x2

that are very close to the first pair (at x = xl). The veloci-

ty of the liquid at the new free surface that is closest to the

barrier on this second cavity, occurring at t = - x2 /c, is

11



SECOND FIRST
CAVITY CAVITY

FREE SURFACE
(BARRIER)

SECOND PAIR OF NEW
FREE SURFACES

V2  VI

x2 X1 0 x

Fig. 8. Second pair of new free surfaces caused by cavitation.
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V 2 = [f(ct - x2 ) + f(ct + x2 - 2xl)]/(pc)

= [f(-2x 2 ) + f(- 2xl)]/(pc)

- 2f(-2x 2 )/(pc), (5)

because x2 - x, and becomes exactly equal in the limit of both

zero cavitation pressure and Pv.

As long as the pressure in the incident wave is sufficiently

large, this process of successive cavitations and new tree sur-

faces will continue so that we can consider the n-th cavitation

in a similar fashion; see Fig. 9. The incident wave will reflect

off of this n-th cavity with the pressure

- f(ct + x - 2xn) + Pv, for ct -x and x : xn .

It is obvious from the previous discussion that the total pres-

sure obeys the boundary condition at x = xn. For sufficiently

high pressures in the incident wave, the liquid will cavitate and

form an n+1-th pair of new free surfaces at x = Xn+1 that is very

close to the n-th pair (at x = xn). The velocity of the liquid

at the new free surface on this n+l-th cavity occurring at

t = -xn+i/c is

Vn+1 = [f(ct - Xn+l) + f(ct + Xn+1 - 2Xn)]/(Pc)

= [f(-2xn+) + f(- 2 Xn)]/(pc )

- 2f(-2Xn+l)/(pc ),  (6)

because xn+1 - xn and becomes exactly equal in the limit of zero

cavitation pressure and Pv"

The liquid between these cavitated surfaces can be regarded

as cavitated "slabs"; see Fig. 9. Because the distances between

13



CAVITATED SLABS

PAIR OF NEW FREESURFACES AT x = x,
PFREE 

SURFACE
(BARRIER)

Vri. 1  Vn V

0x

Fig. 9. Pair of new free surfaces at x = x,,,.

14



the cavitated surfaces are very small, the slabs are very

thin; and, because they are very thin, the slabs have approxi-

mately uniform velocity throughout their thicknesses. Thus, the

approximate velocity of the n+1-th slab given by Eq. 6 is exact

in the limit where the cavitation pressure and Pv are zero. It

is mentioned in passing that Eq. 6 can also be derived by divid-

ing the impulse per unit area imparted by the incident wave to

the n+1-th slab, i.e.,

f(- 2xn+l)[ 2 (xn - xn+l)/C],

by the mass per unit area of the slab, i.e.,

p(xn - xn+l),

as was done by Waldo,14 pp. 2 and 3. It is now convenient to

define the velocity function V(x) as

V(x) = 2f(-2x)/(pc), (7)

from which

V(xn) Vn (8)

by using Eq. 6 for the velocity of the slab.

TRANSMITTED WAVE

After the first slab cavitates, it moves across the barrier

and collides with the opposite side of the barrier; see Fig. 10.

This collision produces an acoustic pulse that propagates into

the liquid on the opposite side of the barrier. In the acoustic

limit, the displacement of the liquid in the slab after collision

15



is negligible so that the position of the end (i.e., the left-

hand side in Fig. 10) of the first slab remains at x = D+x1

(remember that x, < 0) . In like manner, after the second slab

cavitates, it also moves across the barrier and collides with the

first slab (that has previously collided with the opposite side

of the barrier and, in the acoustic limit, has the same thickness

as when it was formed by cavitation); see Fig. 11. This process

continues so that after n-i succeeding slabs pile up on each

other, the n-th slab collides with the pile of n-i slabs at the

time,

(-Xn/c) + (D/Vn),

where D is defined to be the barrier thickness (see discussion of

Eq. 6 for the velocity of the slab). The time when the acoustic

pulse from this collision arrives at x = D (i.e., the opposite

side of the original position of the barrier; see Fig. 12) is

(see Eq. 8)

t,,n = [(-Xn/c) + (D/Vn)] + (-Xn/c)

- (-2xn/c) + [D/V(Xn)]

= t'n + D/V(-ct'n/2), (9)

where

t'n = -2xn/c (10)

is the arrival time of the pulse in the limit of zero barrier

thickness. It can be seen, using Eq. 1 for the pressure of the

incident shock wave, that

16
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f(ct'n) = PI(O,t'n). (1i)

Substituting Eq. 11 into Eq. 7, the velocity function, gives

V(-Ct'n/2) = 2Pi(O,t'n)/(pc). (12)

Substituting Eq. 12 into Eq. 9, for the time when the acoustic

pulse from this collision arrives at x = D, yields

n = t'n + pcD/PI(O,t'n). (13)

From this equation, it is seen that it is appropriate to define

the functional t'' such that, in the limit of zero slab thick-

ness,

t'' = t''(t'n), (14)

or simply

t = t''(t'). (15)

Differentiation of Eq. 15 yields

dt'' = 1 - pcD(Pi(O,t')]- 2 d P(O,t,). (16)

dt, dt'

This equation implies that dt''/dt' > 1, for D > 0, because

Pi(0,t') is a decreasing function of t'. This result is expected

because the fact that the pressure of the incident shock wave de-

creases with time implies that the cavitated slabs have succes-

sively decreasing velocities. This causes a spread in their

arrival times at the opposite side of the barrier resulting in

dt''/dt' > 1.
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If the slabs were of finite thickness, then the transmitted

wave would consist of a series of pulses, each corresponding to a

slab collision; see Fig. 12. However, in the limit of zero

thickness slabs (that occur for sufficiently high pressure inci-

dent shock waves, as explained previously) these pulses are of

zero duration and of infinite frequency. In this situation the

pulses are rapidly damped out by viscous effects so that the

transmitted wave becomes a smooth function of time such that the

momentum of each pulse is conserved, but there might be a signif-

icant loss of energy. It is emphasized that the loss of energy

occurs in the liquid, as it must because there is a vacuum within

the barrier itself. Using Eq. 10 for the pulse arrival time in

the limit of zero barrier thickness and Eq. 12 for the velocity

function, it can be easily seen that the momentum per unit area

of the n+1-th slab is

P(xn - xn+l)Vn+l - PI(O,t'n+l)(t'n+l - t'n)

= Pi(0,t')dt', (17)

where t' = t'n+1 and dt' = t'n+1 - t'n in the limit of zero

thickness slabs. Integration of this equation over time to a

given value of t' provides the total momentum of the collided

slabs up to t'. This total momentum is equal to the total im-

pulse of the incident shock wave up to t'. This total momentum

must be equal to the total impulse up to t'' = t''(t') of the

transmitted wave at x = D, i.e.,

t' t''
PO(,t)dt = PT(Dt)dt,

20
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where PT(x,t) is the pressure of the transmitted wave at any

location, x, and at any time, t; see Eq. 15. For this equality

of momentum and impulse to be valid for any value of t', it is

required that

PI(0,t')dt' = PT(D,t,,)dt,,

or

PT(D,t'') = Pi(0,t')/(dt''/dt'), (18)

where dt''/dt' is given by Eq. 16. It is noted that PT(D,t'') is

assumed to vary smoothly from t''n+1 to t''n+ 2 rather than with

the short pulse from t''n+ 1 to t''n+i+2 (xn-xn+l)/c that would

occur if there were no high frequency damping due to viscosity;

see Fig. 13 and, e.g., Landau and LifshitzA 6 p. 300. For a

given value of t', the corresponding value of t'' now can be

calculated using Eq. 13 and the transmitted pressure at time t''

then can be calculated using Eq. 18. Equation 18 shows that the

pressure of the transmitted wave at time t'' is reduced from that

of the incident wave at the corresponding time t' by

(dt,,/dt,)-I .

For D = 0, there would be no reduction in the pressure of the

incident wave because dt''/dt = 1. However, for D > 0, there

would be a reduction in the pressure of the incident wave because

dt''/dt' > 1, as previously discussed. It is emphasized that

there would be no reduction in the incident wave if the incident

wave were constant in time because dt''/dt' = 1 in this case.

This accentuates the fact that in this model all the reductions

in the pressures of the incident shock wave are the result of it

being a decreasing function of time.
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For a three-dimensional situation, the cavitated slabs are

very unstable and would rapidly break up into droplets that

would collide with the opposite side of the barrier. This would

not result in much change in the velocities of the liquid in the

slabs, but it would produce many more collisions and acoustic

pulses that would be even more rapidly damped than in the one-

dimensional case. This phenomenon would produce a smoother

transmitted wave for a given slab thickness than that for the

one-dimensional situation presented above.

ENERGY TRANSMISSION RATIO

The energy flux per unit area (i.e., the energy flux densi-

ty) of the incident wave is determined using

E= (pc)-l I [Pi0,t')] 2dt', (19)

0

see Cole, 15 p. 143. In like manner, the energy flux per unit

area of the transmitted wave is determined using

ET = (Pc)1[PT(D,t')]2dt''. (20)
0

Substituting Eq. 18 for PT in Eq. 20, and using

dt'' = (dt''/dt')dt', gives

ET = (Pc)-1[Pi(0,t')]2(dt''/dt )-i1dt ' • (21)
0

Equation 21 shows that the energy flux density of the transmitted
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wave is less than that of the incident wave because dt''/dt' > 1;

see the discussion of Eq. 16. The energy transmission ratio,

ET/EI, now can be determined by using Eqs. 19 and 21. As ex-

plained above, the impulse of the transmitted wave is the same as

that of the incident wave.

SPECIAL CASES

To demonstrate the use of this model, the special cases of

the exponentially and hyperbolically decaying incident shock

waves are now presented.

Case 1. Exponentially Decaying Incident Shock Wave

The pressure for the special case of an exponentially decay-

ing incident shock wave is

P1 (O,t') = P1 0exp(-t'/8), (22)

where PI0 is the peak pressure (occurring at t' = 0) and 0 is the

exponential time decay constant. In this case, Eq. 16 becomes

dt'' = 1 + pcD exp(t'/O)/(Pi 08)

dt'

= 1 + D*exp(t'/e), (23)

where

D = pcD/(Pi00 )  (24)

is the nondimensional barrier thickness. For a given value of

t', the corresponding value of t'' now can be calculated using

Eq. 13, and the transmitted pressure at time t'' then can be
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calculated using Eqs. 18 and 23. For t' = 0

t' = pcD/PI0 = D*8 (25)

and the initial (peak) pressure of the transmitted wave is

PT(D,t'') = PT(D,hD*e) = PI0 /(1 + D*). (26)

Equation 26 shows that the peak pressure of the transmitted wave

is less than that of the incident wave by a factor of (1+D*)- I .

For sufficiently large values of t', it can easily be seen from

Eqs. 13 (for t''), 22 (for PI), and 24 (for D*) that

t' = D*e exp(t'/e) (27)

and, from Eqs. 18 and 23, that

PT(D,t'') f 2PioD *- exp(-2t'/e). (28)

For sufficiently large values of t'', Eqs. 27 and 28 imply that

PT(D,t'') - hD*(e/t'') 2p1 0. (29)

Equation 29 shows that for large times the transmitted wave

decays as the reciprocal of the square of the time. This is a

much slower decay than that of the incident wave that decays

exponentially with time.

Fro;i Eq. 19, the energy flux per unit area of the incident

shock wave becomes

EI = (pc) - I P, 0
2 0/2, (30)
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and, from Eq. 21, the energy flux per unit area of the transmit-

ted wave becomes

ET =(pc)- lSPi02exp(-2t'/O)[l+ D*exp(t'/e)]-idt', (31)

0

by using Eq. 23. Substituting t' = 0 logeu into Eq. 31 and

dividing the result by Eq. 30, the energy transmission ratio for

this case can be expressed as

ET/EI = 72(u3 + D*u 4 )-ldu. (32)

1

From this equation, in the extreme situation where D* = 0,

EI/ET = 1, (33)

as expected. Also, in the extreme situation where D* becomes

arbitrarily large, it can be seen from Eq. 32 that

EI/ET = 4/(3D*). (34)

It can be easily verified for these two extreme situations (i.e.,

Eqs. 33 and 34) that the expression

(1 + 3D*/4) - I

has the same asymptotic behavior. Also, by numerically integrat-

ing Eq. 32, it can be shown that for 0 < D*

(1 + 3D*/4) -l - S < ET/EI < (1 + 3D*/4) -1
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where* 6 - 0.0261. Thus, because of the correct asymptotic

behavior and the small value of 6, it appears that for many

purposes the approximation,

ET/EI = (1 + 3D*/4) - I, (35)

should be adequate for this case.

Thus, for the exponentially decaying incident shock wave,

the peak pressure and energy flux density of the transmitted wave

are reduced, but the transmitted wave does not decay as rapidly

as does the incident wave. This is expected because the impulse

of the transmitted wave is always equal to that of the inc.ident

wave for this model.

Case 2. Hvwerbolically Decaying Incident Shock Wave

In the special case of a hyperbolically decaying incident

shock wave,

Pi(0,t') = PI0 (l + t'/8)-1 , for 0 5 t' < r (36)

= 0, otherwise

where, as in the previous special case, PI0 is the peak pressure

(occurring at t' = 0), e is the hyperbolic time decay constant

(defined in analogous fashion to the previous special case) and T

is the cut-off time. In this case, Eq. 16 becomes

dt'' = 1 + D*, for 0 S t' < r (37)

dt'

*'Note that at D* - 0.48, the numerical integration of Eq. 32 yields ET/EI - 0.7092. This is approximately
equal to the lower bound (i.e., the left-hand side) of this inequality.
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where D* is defined to be the same as in Eq. 24. However, unlike

the previous special case (Eq. 23), Eq. 37 is constant in time

except for the discontinuity at t' = T. For this hyperbolically

decaying shock wave, Eq. 13 becomes

t' = D*e + (1 + D*)t', for 0 : t' < T

= C, for t' 2 T (38)

and Eq. 18 becomes

PT(D,t'') = PI0 (1 + t'/O)-i/(l + D*), for 0 : t' < T

= 0, otherwise. (38a)

Solving for t' in Eq. 38 and substituting the resulting expres-

sion in Eq. 38a gives

PT (D ,t'' ) - [ 1 + ] -I____

1 + D* e(1+hD*)

= PI0 [ + D* + (t'' - hD*@)/I] - I

= PI0 (1 + t''/) - , for 0 : t''-hD*O < r(l+ D*)

= 0, otherwise. (39)

For this case Eq. 39 shows that when 0 S t''-hD*8 < T(l+ D*), the

transmitted wave has the same form as the incident wave; see Eq.

36. However, because the pressure of the transmitted wave is

zero for t'' < hD*O, the peak pressure of the transmitted wave is

decreased. Also, the duration in increased. The transmitted wave

is attenuated in this fashion.
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For the hyperbolically decreasing shock wave, Eq. 19 becomes

EI = (pc)- ' PI 02 e[I - (1 + ) (40)

Eq. 21 becomes

ET = (pc)- ' PI0
20[1 - (1 + r/O)-l]/(l + D*), (41)

and the energy transmission ratio becomes

ET/EI = (1 + D*) - I . (42)

Note that this ratio is independent of T. Comparing Eq. 42 with

Eq. 35 shows that the energy transmission ratio for the hyperbol-

ically decreasing shock wave is greater than that of the exponen-

tially decreasing shock wave.

LOWER PRESSURE INCIDENT SHOCK WAVES

The theoretical development that was presented above can be

easily extended to the problem n1. ir"!,ent :hk waves with

lower pressures and barriers with finite pressures. This can be

accomplished with simple modifications of Eqs. 1-8 to treat

cavitated slabs with finite thicknesses, assuming that the liquid

cavitates at a definite pressure. However, the situation could

be much more complicated because one must explicitly consider the

dynamics of the growth of the cavitation bubbles and the effect

of impurities (and their statistical distributions) and other

phenomena; see, e.g., Prosperetti. 17 Also, the treatment of the

transmitted pulse can be easily modified in a similar fashion.

Of course, for sufficiently low pressure shock waves that are
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incident on a barrier that contains material, the usual acoustic

treatment of sound wave reflection and transmission can be ap-

plied; see, e.g., Landau and Lifshitz, 16 p. 253. However, these

modifications require more input parameters and might not be of

much practical use because protection is most important for

incident shock waves with very high pressures. Although this

phenomenon should scale for sufficiently high pressures, it might

not scale for low pressures. This is because the effect of

surface tension and viscosity might be very important during

cavitation and collision for sufficiently low pressures.

EXTENSION OF MODEL TO THREE DIMENSIONS

Perhaps the most elementary three-dimensional extension of

the evacuated-barrier cavitation model is a model of an incident

shock wave emanating from an explosion that can be considered as

a point source. It is noted that this situation might only be

two-dimensional because of possible :xial symmetry about the line

from the point source to the nearest point on the barrier. For

this situation, a simple model can be applied for the initial

velocity distribution after the cavitation (as shown in Fig. 9)

for the interaction of an incident shock wave with an arbitrary

angle of incidence; see, e.g., Waldo14 and cf. Eq. 7.

Using this velocity distribution, the pressure history on

the opposite side of the barrier can be determined by employing

the same concepts that were developed previously for the one-

dimensional situation in the evacuated-barrier cavitation model.

The calculation of the pressure history for any distance beyond

the opposite side of the barrier would require a solution of the

31



acoustic wave equation. The boundary condition for this solution

is the pressure history at each location on the opposite side of

the barrier (as calculated using the model for arbitrary angles

of incidence that was described previously). However, even

without explicitly solving this problem, it appears to be reason-

able that the pressures on the opposite side of the barrier would

rapidly decrease for locations with increasing angle of inci-

dence. This would mean that the pressures of the transmitted

wave would rapidly decrease with increasing distances beyond the

opposite side of the barrier (even along the line of normal

incidence of the shock wave, i.e., the axis of symmetry). Thus,

it can be speculated that there would be a decrease in the im-

pulse of the transmitted shock wave at a given location from what

it would have been at that location if there were no barrier.

However, a full treatment of the problem would be necessary to

justify this speculation.

For explosions that are not close to the barrier, the

bubble that is produced by the explosion will have most of its

expansion take place considerably after the shock wave interac-

tion. Cole, 15 p. 312, has shown that a bubble will be repelled

by a free surface such as that at the evacuated barrier and will

be attracted by an rigid surface. Thus, it is plausible that the

bubble repulsion by the evacuated barrier will reduce the effect

of the shock wave that emanates from the collapse of the bubble

simply because the collapse occurs further away than if the

evacuated barrier were not present. Also the pressure of the

transmitted shock wave produced by the collapse of the bubble is
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reduced by the same effect as was modeled in the development

previously, see Eqs. 13, 16 and 18. Unfortunately, a circum-

stance might occur in which the explosion is too close to the

barrier, the barrier is not sufficiently thick, and the object to

be protected by the barrier is too close to the opposite side of

the barrier. In this circumstance, the bubble expansion might be

sufficiently large to penetrate the barrier and to interact with

the object. If the object is solid and cannot have much move-

ment, the bubble could be attracted to the barrier and collapse

on the object. This collapse could cause unacceptable damage to

the object. However, even in this circumstance the damage could

be substantially reduced by the presence of the barrier.

EXTENSION OF MODEL TO BARRIERS CONTAINING MATERIAL

Consider a barrier containing a material of very low density

and very low crushing-resistance pressure. It is plausible that

the reductions in the pressures of the transmitted shock waves

caused by this barrier could be about the same as those for an

evacuated barrier. However, the thickness of this evacuated

barrier would be less than the actual thickness of the barrier

containing the material. This "effective thickness" might be

equal to that of the vacant space remaining in the barrier if

the material were compressed so that it would have a mass density

that is equal to that of the liquid. Such materials might in-

clude gasses (e.g., air, carbon dioxide, water vapor or steam,

etc.), foams (see, e.g., Kudinov et al. 9 ,10 and Lyakhov,11 ),

bubble screens, styrofoam, solid foams made of elaborate compos-

ite materials, some complicated combination of materials, or
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layers of materials. However, it would not be surprising if the

reductions of pressures in the transmitted shock waves were

greater than those predicted by an evacuated barrier with an

effective thickness obtained in this manner. The greater reduc-

tions might occur because of the (possible) absorption of the

incident shock wave energy by the material in the barrier. Also

it is possible that the barrier could be behaving as if it were

evacuated throughout its full unadjusted thickness, without the

adjustment of the thicknes3 as described. Of course, it is possi-

ble that a barrier could allow more energy transmission than that

of the evacuated-barrier cavitation model. More energy transmis-

sion would occur in the trivial case where the barrier is filled

with the same liquid as that outside the barrier. In this case

there would be no change in the transmitted shock wave from that

of the incident shock wave.

More dense materials (e.g., steel, concrete, sand, etc.)

might reflect a substantial amount of the energy of the incident

shock wave and reduce the pressures of the transmitted shock

wave. But barriers composed of such dense materials are fre-

quently impractical. Of course, more elaborate mathematical

models of the interaction of shock waves with barriers composed

of various materials can be formulated using the concepts consid-

ered in the evacuated-barrier cavitation model. Also, further

considerations such as the drag forces on the liquid droplets as

they move across the barrier might be included. A simple barrier

with negligible mass density that uniformly crushes with a con-

stant pressure can be easily treated using the concepts in Ref.14.
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EXPERIMENTS TO TEST THE THEORY

To test this theory, see Eqs. 13, 16, and 18, experiments

could be performed for a one-dimensional evacuated barrier by

using an underwater shock tube. Also, calculations using the

theory could be compared with existing data for bubble screens

and low-density foams. It would not be expected that these

calculations would agree precisely with the data. But it is

plausible that the evacuated-barrier model, with an effective

thickness (as previously discussed), might provide a good first

approximation.

POSSIBLE APPLICATIONS

Because almost all damaging shock waves decay with time

(Cole,15 p. 110), the evacuated-barrier concept could be used to

protect surface ships and submarines by encasing the hull with a

very low density solid foam (as previously discussed). However,

this foam would have to be strong enough to withstand conditions

at sea. In addition, for submarines the foam would have to

resist the pressures at the collapse depth of their pressure

hulls. Such foams might add too much to the size and weight of

the vessel to be practical.

It is conceivable that a bubble screen could be employed for

naval ships and submarines during an attack. However, the prob-

'ems of additional piping and supply of the gas for the bubbles

would have to be surmounted. Steam from the boilers could be
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used if enough could be generated without severely hindering the

mobility of the craft. Also, a chemical could be released by the

craft that would react with the water and form bubbles that could

provide an effective screen. This chemical could be injected

into the water as coated pellets at the bow of the craft when

under attack. The coatings would dissolve at different times and

thus the chemical would react at different times. This would

provide a bubble screen for the full length of the hull.

There are many other schemes that could be investigated, and

numerous industrial applications of bubble screens such as the

protection of underwater structures from explosions during con-

struction and demolition.

Note that because the impulse is not reduced by the barrier

(see the discussion preceding Eq. 18), there might not be much

reduction in damage imparted to equipment that responds mainly to

impulse rather than peak pressure or energy flux density. As

previously discussed, the bubble produced by the explosion might

collapse on the barrier, penetrate it, and cause additional dam-

age. However, because of the low density of the barrier, the

bubble might be repelled by it and not penetrate the barrier;

see, e.g., Cole,15 pp. 312-352.

SUMMARY

The evacuated-barrier cavitation model was developed. In

this model a one-dimensional shock wave in a liquid is incident

on the surface of an evacuated barrier. Because of this inter-

action, the liquid cavitates. The slabs of cavitated liquid

subsequently move across the barrier and collide with the liquid
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surface on the opposite side of the barrier. These collisions

produce a high frequency of pulses in the liquid on the opposite

side of the barrier that are rapidly damped out. The pressures

and energy flux density of the resulting wave that is transmitted

into the liquid on the opposite side of the barrier can be con-

siderably reduced. These reductions are the result of the fact

that the decay in the pressure of the incident shock wave causes

the distances between the cavitated slabs to spread as they move

across the barrier. Spreading causes the transmitted wave to

have lower pressures and longer duration than the incident shock

wave. The impulse of the transmitted wave is the same as that of

the incident wave., The pressure history of the transmitted wave

can be determined for a decreasing incident wave using Eqs. 13,

16, and 18. For the important case of an exponentially decaying

shock wave, the peak pressure of the transmitted wave is given by

Eq. 26 and the energy flux density of the transmitted wave can be

determined using Eq. 32 or its approximate form, Eq. 35. For a

hyperbolically decaying incident shock wave it was shown (Eq. 39)

that the transmitted wave function has the same form as that of

the incident wave but is attenuated. Extensions of the

evacuated-barrier cavitation model to treat three-dimensional

situations and to include various materials within the barrier

were discussed. Applications of the model for the shock protec-

tion of surface ships and submarines as well as industrial appli-

cations were considered.
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